学习笔记·导数

导数

如果函数$f(x)$在$x_{0}$的一个邻域$(x_{0} - \delta, x_{0} + \delta)$有定义,且极限$\lim\limits_{\Delta x \to 0} \dfrac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$存在,那么称这个极限为$f$在$x_{0}$的导数(derivative),记作$f’(x_{0})$或$\dfrac{\mathrm{d} f}{\mathrm{d} x}(x_{0})$;若设$y = f(x)$,则还可以记作$\left. y’ \right|_{x=x_{0}}$或$\left. \dfrac{\mathrm{d} y}{\mathrm{d} x} \right|_{x=x_{0}}$。此时称$f$在$x_{0}$可导(differentiable)
如果函数$f(x)$在$x_{0}$的一个左邻域$(x_{0} - \delta, x_{0}]$有定义,且极限$\lim\limits_{\Delta x \to 0^{-}} \dfrac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$存在,那么称这个极限为$f$在$x_{0}$的左导数(left derivative),记作$f’_{-}(x_{0})$;如果函数$f(x)$在$x_{0}$的一个右邻域$[x_{0}, x_{0} + \delta)$有定义,且极限$\lim\limits_{\Delta x \to 0^{+}} \dfrac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$存在,那么称这个极限为$f$在$x_{0}$的右导数(right derivative),记作$f’_{+}(x_{0})$。
显然,函数在$x_{0}$可导的充要条件是:它在$x_{0}$的左导数和右导数存在且相等。

如果函数$f$在区间$I$内的每一点都可导,且在端点单侧可导,那么称$f$在区间$I$上可导。此时$x \mapsto f’(x), x \in I$确定了一个函数,称为$f$的导函数(derivative function),简称导数,记作$f’(x)$或$\dfrac{\mathrm{d} f}{\mathrm{d} x}(x)$。后一种符号由德国数学家莱布尼茨(Gottfried Wilhelm Leibniz,1646—1716)发明。

设函数$f$在点$x_{0}$可导,则$f$在点$x_{0}$连续。
证明:


观察曲线$y = f(x)$的图像。连接曲线上的两点$(x_{0}, f(x_{0}))$和$(x_{0} + \Delta x, f(x_{0} + \Delta x))$,可以得到曲线的一条割线,其斜率$k = \dfrac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$。由于函数$f(x)$在$x_{0}$连续,当$\Delta x$趋于$0$时,割线趋于某条特定的直线,这条直线称为曲线在点$(x_{0}, f(x_{0}))$的切线(tangent line),其斜率$k = \lim\limits_{\Delta x \to 0} \dfrac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$。这就是导数的几何意义。
通过点斜式可以写出切线的方程:$y - f(x_{0}) = f’(x_{0}) (x - x_{0})$。

导数的计算

基本函数的导数

常数函数$f(x) = c$的导数为$f’(x) = 0$。
证明:

幂函数$f(x) = x^{n}$的导数为$f’(x) = n x^{n - 1}$。
证明($n \in \mathbb{N}$):

对数函数$f(x) = \ln x$的导数为$f’(x) = \dfrac{1}{x}$。
证明:

三角函数$f(x) = \sin x$的导数为$f’(x) = \cos x$,$g(x) = \cos x$的导数为$g’(x) = -\sin x$。
证明:

导数的四则运算

设$f(x), g(x)$可导,则其和、差也可导,满足$(f(x) \pm g(x))’ = f’(x) \pm g’(x)$。
证明:

设$f(x), g(x)$可导,则其积也可导,满足$(f(x) g(x))’ = f’(x) g(x) + f(x) g’(x)$。特别地,$(c f(x))’ = c f’(x)$。
证明:

设$f(x), g(x)$可导,若$g(x) \ne 0$,则其商也可导,满足$\left(\dfrac{f(x)}{g(x)} \right)’ = \dfrac{f’(x) g(x) - f(x) g’(x)}{g^{2}(x)}$。
证明:
因为$\dfrac{f(x)}{g(x)} = f(x) \cdot \dfrac{1}{g(x)}$,所以先求出$\dfrac{1}{g(x)}$的导数。

于是,

利用导数的四则运算,可以求出对数函数$f(x) = \log_{a} x$的导数为$f’(x) = \dfrac{1}{x \ln a}$:

可以求出三角函数$f(x) = \tan x$的导数为$f’(x) = \sec^{2} x$:

复合函数和反函数的导数

设函数$y = g(x)$的定义域是$I$,函数$z = f(y)$的定义域是$J$,且$f(I) \subseteq J$,若$g$在点$x_{0}$可导,$f$在点$y_{0} = g(x_{0})$可导,则复合函数$f \circ g$在点$x_{0}$可导,满足$(f \circ g)’(x_{0}) = f’(g(x_{0})) \cdot g’(x_{0})$。用莱布尼茨的符号也可以写成$\dfrac{\mathrm{d} z}{\mathrm{d} x} = \dfrac{\mathrm{d} z}{\mathrm{d} y} \cdot \dfrac{\mathrm{d} y}{\mathrm{d} x}$。这就是链式法则(chain rule)
证明:
令$h(\Delta y) = \begin{cases} \dfrac{f(y_{0} + \Delta y) - f(y_{0})}{\Delta y}, & \Delta y \ne 0 \\ f’(y_{0}), & \Delta y = 0 \end{cases}$。根据导数的定义,函数$h$在$\Delta y = 0$处连续。那么,

由链式法则容易得到,$(\ln f(x))’ = \dfrac{f’(x)}{f(x)}$。将其变形可得$f’(x) = f(x) (\ln f(x))’$,从而建立了函数的导数与其对数的导数之间的联系。在对函数本身求导难于对其对数求导时,可以采用这种对数求导法(logarithmic differentiation)
例如,用对数求导法对$f(x) = x^{\alpha}$求导:

其中$\alpha \in \mathbb{R}$。这是对幂函数的求导法则的更加一般的证明。

设函数$y = f(x)$在区间$I$上连续,且存在反函数$x = f^{-1}(y)$,若$f$在点$x_{0} \in I$可导,且$f’(x_{0}) \ne 0$,则反函数$f^{-1}$在$y_{0} = f(x_{0})$可导,满足$(f^{-1})’(y_{0}) = \dfrac{1}{f’(x_{0})}$。
证明:

反函数的导数也可以从链式法则推出:

用莱布尼茨的符号也可以写成$\dfrac{\mathrm{d} x}{\mathrm{d} y} \cdot \dfrac{\mathrm{d} y}{\mathrm{d} x} = 1$。

这样就可以求出指数函数$f(x) = a^{x}$的导数为$f’(x) = a^{x} \ln a$:

特别地,$(\mathrm{e}^{x})’ = \mathrm{e}^{x}$。

可以求出反三角函数$f(x) = \arcsin x$的导数为$f’(x) = \dfrac{1}{\sqrt{1 - x^{2}}}$,$g(x) = \arccos x$的导数为$g’(x) = -\dfrac{1}{\sqrt{1 - x^{2}}}$,$h(x) = \arctan x$的导数为$h’(x) = \dfrac{1}{1 + x^{2}}$:

隐函数的导数

有的时候,函数并不能表示为$y = f(x)$的解析式,而是由方程$F(x, y) = 0$确定。这种函数称为隐函数(implicit function)。例如,单位圆的方程$x^{2} + y^{2} = 1$就确定了一个隐函数。
对隐函数求导,可以将$y$看作$x$的函数,利用链式法则在等式两边分别对$x$求导。例如,对$x^{2} + y^{2} = 1$求导可得$2x + 2y \cdot y’ = 0$,从而解得$y’ = -\dfrac{x}{y}$。

高阶导数

设函数$f(x)$在区间$I$上有导数$f’(x)$,且$f’$在$I$上可导,则称$(f’(x))’$为$f$在区间$I$上的二阶导数(second derivative),记作$f’’(x)$或$\dfrac{\mathrm{d}^{2} f}{\mathrm{d} x^{2}}(x)$。如果二阶导数仍然可导,那么就有三阶导数(third derivative)$f’’’(x)$或$\dfrac{\mathrm{d}^{3} f}{\mathrm{d} x^{3}}(x)$。一般地,如果$f$的$n - 1$阶导数可导,那么称其导数为$f$的$n$阶导数($n$-th derivative),记作$f^{(n)}(x)$或$\dfrac{\mathrm{d}^{n} f}{\mathrm{d} x^{n}}(x)$。无限阶可导的函数称为光滑函数(smooth function)

根据定义,不难得到两个函数和、差的高阶导数:

对于两个函数乘积的高阶导数,则有莱布尼茨公式(Leibniz rule)

证明:
用数学归纳法。$n = 1$时显然成立。假设$n = m$时成立,则$n = m + 1$时,

微分中值定理

罗尔中值定理

设函数$f(x)$在$x_{0}$的一个邻域$U = (x_{0} - \delta, x_{0} + \delta)$有定义,如果$x_{0}$满足$\forall x \in U, f(x) \le f(x_{0})$,那么$x_{0}$是$f$的一个极大值点(maximum point),$f(x_{0})$是$f$的一个极大值(maximum);如果是$f(x) \ge f(x_{0})$,那么$x_{0}$是$f$的一个极小值点(minimum point),$f(x_{0})$是$f$的一个极小值(minimum)。极大值和极小值统称极值(extremum),极大值点和极小值点统称极值点(extremum point)。与最值相比,极值定义于局部,而最值定义于整体。

费马定理(Fermat’s theorem)有:
设函数$f(x)$在区间$I$内的一点$x_{0}$可导,且$f$在$x_{0}$取到极值,则$f’(x_{0}) = 0$。
若$f’(x_{0}) = 0$,称$x_{0}$为$f$的一个驻点(stationary point)。费马定理给出了区间内驻点是极值点的必要条件,但非充分条件。极值点一定是驻点,但驻点不一定是极值点。
费马定理的证明:
不妨设$x_{0}$为极大值点。根据定义,存在一个邻域$(x_{0} - \delta, x_{0} + \delta) \subseteq I$,使得$\forall h \in (-\delta, \delta), f(x_{0} + h) \le f(x_{0})$。$\dfrac{f(x_{0} + h) - f(x_{0})}{h}$在$h < 0$时非负,在$h > 0$时非正。令$h \to 0^{-}$,则$f’(x_{0}) = f’_{-}(x_{0}) \ge 0$;令$h \to 0^{+}$,则$f’(x_{0}) = f’_{+}(x_{0}) \le 0$。因此$f’(x_{0}) = 0$。$\Box$

显然,如果函数在区间内的一点取到最大值或最小值,那么在该点也取到极大值或极小值。于是有罗尔中值定理(Rolle’s theorem)
设函数$f$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导,若$f(a) = f(b)$,则存在$\xi \in (a, b)$,使得$f’(\xi) = 0$。
证明:
根据最值定理,函数$f$在闭区间$[a, b]$上可以取到最值。如果最值可以在开区间$(a, b)$上的一点$\xi$取到,那么$\xi$也是极值点,根据费马定理,$f’(\xi) = 0$。如果最值只能在区间端点取到,因为$f(a) = f(b)$,所以$f$的最大值和最小值相等,$f$为常数,而常数函数的导数为$0$。$\Box$
罗尔中值定理的几何意义是:如果函数两个端点的函数值相等,那么函数图像上至少有一点的切线平行于$x$轴。
罗尔中值定理的几何意义

拉格朗日中值定理与柯西中值定理

拉格朗日中值定理(Lagrange’s mean value theorem)是罗尔中值定理的推广:
设函数$f$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导,则存在$\xi \in (a, b)$,使得$f’(\xi) = \dfrac{f(b) - f(a)}{b - a}$。
证明:
过点$(a, f(a)), (b, f(b))$的直线方程为$y = \dfrac{f(b) - f(a)}{b - a} (x - a) + f(a)$。令函数$F(x) = f(x) - \left(\dfrac{f(b) - f(a)}{b - a} (x - a) + f(a) \right)$,则$F(a) = F(b) = 0$。显然,函数$F$在$[a, b]$上连续,在$(a, b)$上可导。根据罗尔中值定理,存在$\xi \in (a, b)$,使得$F’(\xi) = 0$。因为$F’(x) = f’(x) - \dfrac{f(b) - f(a)}{b - a}$,所以$f’(\xi) = \dfrac{f(b) - f(a)}{b - a}$。$\Box$
拉格朗日中值定理的几何意义是:函数图像上至少有一点的切线平行于函数两个端点的连线。
拉格朗日中值定理的几何意义

利用拉格朗日中值定理容易得到一个推论:
若函数$f$在区间$I$上可导,且对任意$x \in I$都有$f’(x) = 0$,则$f$在区间$I$上为常数。
也就是说,导数为$0$的函数一定是常数函数。
证明:
设任意两点$x_{1}, x_{2} \in I$且$x_{1} < x_{2}$,由拉格朗日中值定理有$\dfrac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} = f’(\xi)$。因为$f’(\xi) = 0$,所以$f(x_{1}) = f(x_{2})$。$\Box$

由这个推论又容易得到:
若函数$f, g$在区间$I$上可导,且对任意$x \in I$都有$f’(x) = g’(x)$,则$f, g$在区间$I$上相差一个常数。
也就是说,导数相同的函数只有常数项不同,这对于积分非常有帮助。
证明:
令$h(x) = f(x) - g(x)$,则$h’(x) = f’(x) - g’(x) = 0$。由前面的推论可得,$h(x)$为常数,因此$f(x), g(x)$相差一个常数。$\Box$

柯西中值定理(Cauchy’s mean value theorem)是拉格朗日中值定理的推广:
设函数$f, g$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导,且对任意$x \in (a, b)$都有$g’(x) \ne 0$,则存在$\xi \in (a, b)$,使得$\dfrac{f’(\xi)}{g’(\xi)} = \dfrac{f(b) - f(a)}{g(b) - g(a)}$。
拉格朗日中值定理是$g(x) = x$时的特殊情况。
证明:
令函数$F(x) = f(x) - \left(\dfrac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) + f(a) \right)$,则$F(a) = F(b) = 0$。显然,函数$F$在$[a, b]$上连续,在$(a, b)$上可导。根据罗尔中值定理,存在$\xi \in (a, b)$,使得$F’(\xi) = 0$。因为$F’(x) = f’(x) - \dfrac{f(b) - f(a)}{g(b) - g(a)} g’(x)$,所以$\dfrac{f’(\xi)}{g’(\xi)} = \dfrac{f(b) - f(a)}{g(b) - g(a)}$。$\Box$
柯西中值定理的几何意义是:用参数方程$\begin{cases} x = g(t) \\ y = f(t) \end{cases}$表示的曲线上至少有一点的切线平行于曲线两个端点的连线。
柯西中值定理的几何意义

导数的应用

函数的单调性与极值点

从几何上看,函数图像在一点的切线斜率的正负体现了该点附近的图像是上升还是下降。因此,我们可以通过导数判断函数的单调性:
设函数$f$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导。若对任意$x \in (a, b)$都有$f’(x) > 0$,则$f$在$[a, b]$上为增函数;若对任意$x \in (a, b)$都有$f’(x) < 0$,则$f$在$[a, b]$上为减函数。
利用中值定理可以证明:
设任意两点$x_{1}, x_{2} \in [a, b]$且$x_{1} < x_{2}$,由拉格朗日中值定理有$f(x_{2}) - f(x_{1}) = f’(\xi) (x_{2} - x_{1}), \xi \in (x_{1}, x_{2})$。因为$x_{2} - x_{1} > 0$,所以右边的正负号和$f’(\xi)$一致。$\Box$

从几何上看,单调性改变的点实际上就是极值点。因此,我们可以通过导数求函数的极值:
设函数$f$在一点$x_{0}$连续,以$x_{0}$为界,
若$f’$在$x_{0}$的一个去心邻域$(x_{0} - \delta, x_{0}) \cup (x_{0}, x_{0} + \delta)$先正后负,则$x_{0}$是$f$的一个极大值点;
若$f’$在$x_{0}$的一个去心邻域$(x_{0} - \delta, x_{0}) \cup (x_{0}, x_{0} + \delta)$先负后正,则$x_{0}$是$f$的一个极小值点;
若$f’$在$x_{0}$的一个去心邻域$(x_{0} - \delta, x_{0}) \cup (x_{0}, x_{0} + \delta)$符号不变,则$x_{0}$不是$f$的极值点。

结合下面凹凸性的判断,我们还可以通过二阶导数求函数的极值:
设函数$f$在一个驻点$x_{0}$二阶可导,
若$f’’(x_{0}) > 0$,则$x_{0}$为$f$的一个极小值点;
若$f’’(x_{0}) < 0$,则$x_{0}$为$f$的一个极大值点。

函数的凹凸性与拐点

函数$f$在区间$I$上是凹函数,当且仅当$f$在区间$I$上连续,且对于任意$x_{1}, x_{2} \in I$和任意$\lambda \in (0, 1)$都有$f(\lambda x_{1} + (1 - \lambda) x_{2}) \le \lambda f(x_{1}) + (1 - \lambda) f(x_{2})$。这是凹函数的定义。
由$x = \lambda x_{1} + (1 - \lambda) x_{2}$,有$\lambda = \dfrac{x_{2} - x}{x_{2} - x_{1}}, 1 - \lambda = \dfrac{x - x_{1}}{x_{2} - x_{1}}$。
因此定义式可以改写为

注意到$x_{2} - x_{1} = (x_{2} - x) + (x - x_{1})$,整理可得,当$x_{1} < x_{2}$时

这是凹函数的另一种定义式。

如果$f$在区间$I$上可导,令$x$分别趋于$x_{1}, x_{2}$,得到

于是凹函数的导数单调递增。
而对于任意$x_{1} < x < x_{2}$,由拉格朗日中值定理有$\dfrac{f(x) - f(x_{1})}{x - x_{1}} = f’(\xi_{1}), \xi_{1} \in (x_{1}, x)$和$\dfrac{f(x_{2}) - f(x)}{x_{2} - x} = f’(\xi_{2}), \xi_{2} \in (x, x_{2})$。如果$f’$单调递增,那么$f’(\xi_{1}) \le f’(\xi_{2})$,从而得到上面的定义式。
于是导数单调递增的函数为凹函数。

由此我们从充分性和必要性证明了:
若$f$在区间$I$上可导,则$f$在区间$I$上为凹函数当且仅当$f’$在区间$I$上为增函数。同理,$f$在区间$I$上为凸函数当且仅当$f’$在区间$I$上为减函数。
结合单调性的判断,我们可以通过二阶导数判断函数的凹凸性:
若$f$在区间$I$上二阶可导,则$f$在区间$I$上为凹函数当且仅当对任意$x \in I$都有$f’’(x) > 0$,$f$在区间$I$上为凸函数当且仅当对任意$x \in I$都有$f’’(x) < 0$。

如果函数$f$在点$x_{0}$凹凸性改变,那么$x_{0}$是$f$的一个拐点(inflection point)
显然,以$x_{0}$为界,
若函数$f$在$x_{0}$的一个去心邻域$(x_{0} - \delta, x_{0}) \cup (x_{0}, x_{0} + \delta)$可导,且$f’$在该去心邻域单调性改变,则$x_{0}$是$f$的拐点;
若函数$f$在$x_{0}$的一个去心邻域$(x_{0} - \delta, x_{0}) \cup (x_{0}, x_{0} + \delta)$二阶可导,且$f’’$在该去心邻域符号改变,则$x_{0}$是$f$的拐点。
注意,如同驻点不一定是极值点,$f’’(x_{0}) = 0$不代表$x_{0}$一定是拐点。

函数图像的绘制

通过导数,我们可以判断函数的单调性与凹凸性,从而就能粗略地绘制出函数的图像。一般来说,函数图像的绘制有以下步骤:

  1. 确定函数的定义域;
  2. 确定函数的对称性与周期性;
  3. 确定函数的渐近线;
  4. 计算导数,确定函数的单调区间和极值点;
  5. 计算二阶导数,确定函数的凹凸区间和拐点。

其中,曲线的渐近线(asymptote)是当$x$坐标或$y$坐标或两者同时趋于无穷大时,与该曲线距离趋于$0$的直线。
直线$x = x_{0}$是曲线$y = f(x)的$垂直渐近线(vertical asymptote)当且仅当$\lim\limits_{x \to x_{0}^{-}} f(x) = \infty$或$\lim\limits_{x \to x_{0}^{+}} f(x) = \infty$;
直线$y = b$是曲线$y = f(x)的$水平渐近线(horizontal asymptote)当且仅当$\lim\limits_{x \to +\infty} f(x) = b$或$\lim\limits_{x \to -\infty} f(x) = b$;
直线$y = ax + b (a \ne 0)$是曲线$y = f(x)的$斜渐近线(oblique asymptote)当且仅当$\lim\limits_{x \to +\infty} (f(x) - (ax + b)) = 0$或$\lim\limits_{x \to +\infty} (f(x) - (ax + b)) = 0$。

平面曲线的曲率


假设一个动点沿着曲线从点$A$运动到点$B$,那么曲线在动点的切线便旋转了一个角度$\Delta \varphi$,动点运动的路程就是$\overset{\LARGE{\frown}}{AB}$的弧长$\Delta s$。我们可以用$\Delta \varphi$和$\Delta s$这两个量来描述曲线的弯曲程度:弧长一定时,角度越大,弯曲程度越大;角度一定时,弧长越小,弯曲程度越大。
当点$B$趋于点$A$时,我们可以将$\dfrac{\Delta \varphi}{\Delta s}$的极限看作点$A$的弯曲程度,于是我们定义曲线在点$A$的曲率(curvature)

直接用定义求曲率十分困难。对于曲线$y = f(x)$的曲率,我们可以考虑两点$A(x, f(x)), B(x + \Delta x, f(x + \Delta))$,当$\Delta x$趋于$0$时,把$\overset{\LARGE{\frown}}{AB}$看作直线,即$\Delta s \approx \sqrt{(\Delta x)^{2} + (f(x + \Delta x) - f(x))^{2}}$。此时

切线的斜率就是导数,所以$\Delta \varphi = \arctan f’(x + \Delta x) - \arctan f’(x)$,于是

从而得到曲线在点$A$的曲率

这就是曲率的公式。不难求出,直线的曲率处处为零。
从公式可以看出,$\kappa$的符号与二阶导数一致,这说明曲率也描述了曲线的凹凸性。$\kappa > 0$时曲线为凹,$\kappa < 0$时曲线为凸。$|\kappa|$的大小则描述了曲线的凹凸程度。

对于参数方程确定的曲线$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$,我们还可以进一步得到其曲率的公式。将曲线写成隐函数$y = f(x)$的形式,则$f’(x) = \dfrac{h’(t)}{g’(t)}, f’’(x) = \dfrac{g’(t) h’’(t) - g’’(t) h’(t)}{(g’(t))^{3}}$。代入曲率的公式,就能得到

圆的参数方程是$\begin{cases} x = a + r \cos \theta \\ y = b + r \sin \theta \end{cases}$,据此可以计算圆的曲率:

由此可知,圆的曲率处处相等。圆的曲率为半径的倒数,半径越小,曲率越大。

为了方便,我们常常用一个曲率相等的圆来近似一点附近的曲线,称为曲率圆(osculating circle)。曲率圆的半径$\rho = \dfrac{1}{|\kappa|}$称为曲率半径(radius of curvature),曲率圆的圆心称为曲率中心(center of curvature)
过曲线上一点且与曲线在该点的切线垂直的直线称为法线(normal)。过曲线上一点$A$作曲线的法线,在法线上曲线的凹侧取点$C$使得$|CA| = \rho$,则以$C$为圆心、$\rho$为半径的圆就是曲线在点$A$的曲率圆。
曲率圆

要求出曲率圆的方程就要求出曲率中心的坐标。设曲线$y = f(x)$在点$A(x, y)$的曲率中心$C(a, b)$。因为点$A$在曲率圆上,所以

又因为曲线在点$A$的切线与曲率圆的半径$CA$垂直,所以

联立两式,可得

$y’’, y - b$异号,两边开根号得$y - b = -\dfrac{1 + (y’)^{2}}{y’’}$。又$x - a = -y’ (y - b) = \dfrac{y’ (1 + (y’)^{2})}{y’’}$,于是得到曲率中心$C$的坐标:

未定式的极限

遇到两个无穷小量之比或两个无穷大量之比的极限问题时,我们无法直接确定极限,这类极限称为未定式(indeterminate form)。利用导数,我们就可以计算出未定式的极限。
对于$\dfrac{0}{0}$型未定式和$\dfrac{\infty}{\infty}$型未定式,我们有洛必达法则(L’Hôpital’s rule)
设函数$f, g$在$x_{0}$的一个去心邻域可导,且$g’(x) \ne 0$,若$\lim\limits_{x \to x_{0}} f(x) = \lim\limits_{x \to x_{0}} g(x) = 0$或$\lim\limits_{x \to x_{0}} g(x) = \infty$,则$\lim\limits_{x \to x_{0}} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to x_{0}} \dfrac{f’(x)}{g’(x)}$。

首先给出$\dfrac{0}{0}$型未定式的证明:
不妨设$f(x_{0}) = g(x_{0}) = 0$,于是$f, g$在点$x_{0}$连续。设$x$为去心邻域内一点,根据柯西中值定理,存在$x, x_{0}$之间的$\xi$,使得$\dfrac{f(x)}{g(x)} = \dfrac{f(x) - f(x_{0})}{g(x) - g(x_{0})} = \dfrac{f’(\xi)}{g’(\xi)}$。因为$|\xi - x_{0}| < |x - x_{0}|$,所以$x \to x_{0}$时$\xi \to x_{0}$,于是$\lim\limits_{x \to x_{0}} \dfrac{f(x)}{g(x)} = \lim\limits_{\xi \to x_{0}} \dfrac{f’(\xi)}{g’(\xi)}$。$\Box$

然后给出$\dfrac{\infty}{\infty}$型未定式的证明:
设极限$\lim\limits_{x \to x_{0}} \dfrac{f’(x)}{g’(x)} = l$,首先考虑$l$有限的情况。因为$\lim\limits_{x \to x_{0}^{+}} \dfrac{f’(x)}{g’(x)} = l$,所以对于任意的$\varepsilon > 0$,存在$\delta_{1} > 0$,使得$x \in (x_{0}, x_{0} + \delta_{1})$时有$l - \varepsilon < \dfrac{f’(x)}{g’(x)} < l + \varepsilon$。取$[x, c] \subseteq (x_{0}, x_{0} + \delta_{1})$,根据柯西中值定理,存在$\xi \in (x, c)$,使得$\dfrac{f(x) - f(c)}{g(x) - g(c)} = \dfrac{f’(\xi)}{g’(\xi)}$,于是$l - \varepsilon < \dfrac{f(x) - f(c)}{g(x) - g(c)} < l + \varepsilon$。
因为$\lim\limits_{x \to x_{0}} g(x) = \infty$,所以对于固定的$c$,存在$\delta_{2} > 0$,使得$x \in (x_{0}, x_{0} + \delta_{2})$时有$\left|\dfrac{g(c)}{g(x)} \right| < \varepsilon, \left|\dfrac{f(c)}{g(x)} \right| < \varepsilon$。令$\delta = \min(\delta_{1}, \delta_{2})$,则$x \in (x_{0}, x_{0} + \delta)$时有$\dfrac{f(x)}{g(x)} = \dfrac{f(x) - f(c)}{g(x) - g(c)} - \dfrac{f(x) - f(c)}{g(x) - g(c)} \cdot \dfrac{g(c)}{g(x)} + \dfrac{f(c)}{g(x)}$。于是

得到$\lim\limits_{x \to x_{0}^{+}} \dfrac{f(x)}{g(x)} = l$。同理,$\lim\limits_{x \to x_{0}^{-}} \dfrac{f(x)}{g(x)} = l$。
然后考虑$l = \infty$的情况。因为$\lim\limits_{x \to x_{0}} \dfrac{g’(x)}{f’(x)} = 0$,所以$\lim\limits_{x \to x_{0}} \dfrac{g(x)}{f(x)} = 0$,因此$\lim\limits_{x \to x_{0}} \dfrac{f(x)}{g(x)} = \infty$。$\Box$

之前给出的重要极限$\lim\limits_{x \to 0} \dfrac{\sin x}{x}$便是一个$\dfrac{0}{0}$型未定式:

再举一个$\dfrac{\infty}{\infty}$型未定式的例子。设$n$为正整数,$a > 1$,求$\lim\limits_{x \to +\infty} \dfrac{x^{n}}{a^{x}}$:

事实上,对于任意的$0 < \alpha < n$,因为$x > 1$时$0 < \dfrac{x^{\alpha}}{a^{x}} < \dfrac{x^{n}}{a^{x}}$,所以根据迫敛定理$\lim\limits_{x \to +\infty} \dfrac{x^{\alpha}}{a^{x}} = 0$。这个极限说明指数函数的增长速度远大于幂函数。

对于$0 \cdot \infty, \infty - \infty, 0^{0}, \infty^{0}, 1^{\infty}$型未定式,可以转化为$\dfrac{0}{0}$和$\dfrac{\infty}{\infty}$型未定式来使用洛必达法则。
例如,计算$0 \cdot \infty$型未定式$\lim\limits_{x \to 0^{+}} x \ln x$,可以将其转化为$\dfrac{\infty}{\infty}$型未定式:

牛顿法

很多时候,方程没有解析解,因此计算精确度高的数值解十分重要。二分法是一种近似求解方程的根的方法,但效率较低。于是,利用切线和导数,我们有牛顿法(Newton’s method),或称牛顿-拉弗森方法(Newton–Raphson method)
对于函数$f$,我们需要先选取一个$f$零点$\xi$附近的点$x_{0}$,计算过点$(x_{0}, f(x_{0}))$的切线,切线与$x$轴的交点记作$x_{1}$。我们发现,$x_{1}$比$x_{0}$更加接近方程的根$\xi$,于是考虑计算过点$(x_{1}, f(x_{1}))$的切线与$x$轴的交点$x_{2}$,进一步近似方程的根。利用近似值$x_{2}$,又可以计算出下一个近似值$x_{3}$。不断迭代下去,对方程的根的近似精确度越来越高。

函数$f$在点$(x_{n}, f(x_{n}))$的切线方程为

令$y = 0$,便可解得切线与$x$轴的交点横坐标

于是我们得到了近似值的迭代公式

这样,我们就获得了一个收敛于$\xi$的数列$\{x_{n}\}_{0}^{\infty}$。通过数列中的项,可以不断逼近$\xi$。

牛顿法

0%